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There is currently considerable interest in understanding the
factors that control the structures of organic molecular crystals,
particularly as such structural rationalization is an essential pre-
requisite for the design of molecular crystals with specific desired
properties, an area of activity often called crystal engineering.1 In
general, however, the crystal structure (or structures) observed for
a given molecule arises from the interplay of several factors, and
rather than attempting to establish generalizations from individual
structures taken in isolation, a more informative approach toward
the empirical rationalization of crystal structures is to explore struc-
tural trends within systematically well-defined families of mol-
ecules. Among families of direct interest2 in this regard are the
carboxylic acid derivatives of benzene, C6(CO2H)nH6-n (n ) 1-6),
of which there are 12 members (including different isomers for
some values ofn). Given the well-established hydrogen-bonding
capability of the carboxylic acid groups in molecules within this
family2 and the geometrically well-defined positioning of these
groups around the rigid molecular core, general concepts derived
from structural rationalization of these materials clearly have wider
relevance, for example, in the development of strategies for crystal
engineering. Indeed, one member (benzene-1,3,5-tricarboxylic acid;
trimesic acid) of this family has received attention3 with regard to
its potential for utilization in crystal design strategies. The structures
of most members of this family have been reported previously4

from single-crystal X-ray diffraction studies, although one member
of the family for which the structure has so far remained undeter-
mined is benzene-1,2,3-tricarboxylic acid (BTCA; hemimellitic
acid). Although this compound has been of interest from several
viewpoints for over 100 years,5 the crystal structure of BTCA has
never been reported. However, a range of solvate structures of
BTCA are known, including a dihydrate structure6 and solvate
structures containing several different alcohols7a and other solvent
molecules.7a,bIt is clear that crystal growth of a “pure” (nonsolvate)
crystal phase of BTCA is rendered difficult by the competitive
formation of solvate phases during crystal growth from solution.

For materials of this type that cannot be prepared as a pure
(nonsolvate) phase by conventional crystal growth processes,8 it
may be possible to obtain the pure phase of interest by means of a
solid-state desolvation process,9 usually at elevated temperature and/
or reduced pressure. Such processes, however, are commonly
associated with loss of crystal integrity, such that each single crystal
of the parent (solvate) structure yields a polycrystalline aggregate
upon desolvation.10 Single-crystal X-ray diffraction is, therefore,
inappropriate for structure determination of the desolvated phase,
and alternative approaches for structural characterization are
required. Fortunately, in this regard, there have been significant
advances in recent years in the opportunities for carrying out
complete structure determination of molecular solids directly from
powder X-ray diffraction (PXRD) data,11 particularly through the
development of the “direct-space” strategy for structure solution.11a

The emergence of these techniques now provides a viable route
for structural characterization of microcrystalline powder samples
produced directly by solid-state processes of the type discussed
above. In this paper, we demonstrate the utility of modern PXRD
techniques for obtaining structural understanding of molecular
materials that can be obtained only by solid-state desolvation
processes, focusing on the specific example of BTCA.

In the present work, a polycrystalline sample of pure BTCA was
obtained by dehydration of BTCA dihydrate at elevated tempera-
ture.12 PXRD confirmed that this process leads to a new solid phase
(Figure 1), with no detectable amount of BTCA dihydrate remain-
ing, and high-resolution solid-state13C NMR was consistent with
the assignment of the new phase as pure BTCA (with no evidence
that any chemical transformation had occurred). Structure deter-
mination of the pure phase of BTCA was carried out directly from
PXRD data13,14 using the direct-space genetic algorithm (GA)
technique15 (in the program EAGER16) for structure solution,17

followed by Rietveld refinement18 using the program GSAS.19 The
good agreement between calculated and experimental PXRD
patterns in the final Rietveld refinement (Figure 2) vindicates the
correctness of the structure. As there are three independent
molecules in the asymmetric unit,14 each with three unknown torsion
angles, this structure represents a comparatively challenging case
for direct-space structure solution, and the total number of structural

Figure 1. PXRD patterns of BTCA dihydrate (blue) and the material
obtained following the dehydration process (red).

Figure 2. Experimental (+ marks), calculated (solid line), and difference
(lower line) PXRD profiles for the final Rietveld refinement of BTCA.
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variables involved in the optimization is the largest so far reported
using the GA technique.

In the structure of BTCA (Figure 3), all carboxylic acid groups
participate in intermolecular hydrogen bonding to other carboxylic
acid groups via theR2

2(8) motif that is often found in carboxylic
acid “dimers”. The three independent molecules have similar
conformations20 (the “inner” carboxylic acid group is nearly
perpendicular to the ring; the two “outer” carboxylic acid groups
lie closer to the plane of the ring). The BTCA structure comprises
a number of distinct hydrogen-bonded arrays,20 which differ
substantially from those in BTCA dihydrate, implying that sub-
stantial structural reorganization is involved during the solid-state
dehydration process. Under such circumstances, loss of crystal
integrity during the dehydration process to produce a polycrystalline
product phase is not at all surprising.

BTCA is representative of the significant number of materials
that cannot be obtained as a nonsolvate structure by conventional
solution-state crystallization procedures but can, instead, be accessed
directly by a solid-state desolvation process. As such processes
invariably lead to the formation of polycrystalline powders,
techniques that allow the crystal structures of molecular solids to
be determined directly from PXRD data have a key role to play in
the structural characterization of new phases produced in this way.
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Figure 3. Crystal structure of BTCA.20 The three independent molecules
are displayed in different colors (A, green; B, blue; C, red): (a) the
hydrogen-bonded chain of A and C molecules viewed approximately along
the c-axis; (b) the complete crystal structure viewed along theb-axis (the
AC chains run into the page, with adjacent AC chains cross-linked by
hydrogen bonding to B molecules to form two-dimensional slabs that are
oriented diagonally (top-right to bottom-left) in the view shown).
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